(1.1)^2+(b)^2=(1.6)^2

Simple and best practice solution for (1.1)^2+(b)^2=(1.6)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1.1)^2+(b)^2=(1.6)^2 equation:



(1.1)^2+(b)^2=(1.6)^2
We move all terms to the left:
(1.1)^2+(b)^2-((1.6)^2)=0
We add all the numbers together, and all the variables
b^2-1.35=0
a = 1; b = 0; c = -1.35;
Δ = b2-4ac
Δ = 02-4·1·(-1.35)
Δ = 5.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{5.4}}{2*1}=\frac{0-\sqrt{5.4}}{2} =-\frac{\sqrt{}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{5.4}}{2*1}=\frac{0+\sqrt{5.4}}{2} =\frac{\sqrt{}}{2} $

See similar equations:

| 90+3x=120+-6 | | 6x-8x+12x-2=8 | | 13=j/3+11 | | 5=x/4+1 | | 0.5(x-2)=0.3(2x+1)-1.2 | | 2m-5m+8m=45 | | -5x-25=5(x+7) | | 2x+4+3x-6=13 | | y-50/7=4 | | -5x+116=-7x+132 | | z2+13z+36=0 | | a+26/9=5 | | x+x+x+x+100=180 | | (a)^2+(5)^2=(13)^2 | | 1-(-7x)-x=x-2(x-7) | | 4+10c=8 | | 20=2n+10 | | -8q+-12=20 | | (x-2)+4x=(x+2)+5 | | 9=4/q | | 16^a-3=32^3a+2 | | 6m=6=-3 | | 92-5x=-9x+100 | | 70-0.2x=0 | | 13*x=5,2 | | x^2+24x+68=180 | | f/2+35=43 | | 7x-5=8(3+x) | | 13xx=5,2 | | 2(b+66)=4 | | 77+31+x=180 | | 5/4=4c=1/4 |

Equations solver categories